

No. : 108/IPWIJA.LP2M/PT-00/2023

Perihal : Edaran Penelitian Dosen

Lampiran : -

Kepada Yth.

Bapak/Ibu Dosen Tetap

Universitas IPWIJA

Dengan hormat,

Sehubungan dengan dimulainya semester Ganjil Tahun Akademik 2023/2024, perlu diingat

kembali tentang salah satu kewajiban Tri Dharma Perguruan Tinggi Dosen yaitu melaksanakan

penelitian. Berkenaan dengan hal itu maka disampaikan:

- Terima kasih kepada Bapak/Ibu Dosen Peneliti yang telah merespon Surat Edaran Kepala

LP2M No.043/IPWIJA.LP2M/PT-00/2023 tanggal 6 Maret 2023 tentang Kegiatan Bidang

Penelitian dengan aktif berperan dalam berbagai pertemuan ilmiah, melaksanakan

penelitian dan mempublikasikan hasil penelitian di berbagai jurnal ilmiah.

- Dosen yang telah menyelesaikan laporan penelitian dan mempublikasikannya pada

semester Genap Tahun Akademik 2022/2023 diharapkan mengajukan usulan penelitian

baru kepada LP2M.

- Dosen yang telah menyelesaikan tahap akhir penelitian diharapkan dapat segera membuat

laporan hasil penelitian dan mempublikasikannya di semester Ganjil Tahun Akademik

2023/2024.

- Pada semester Ganjil Tahun Akademik 2023/2024, Dosen diharapkan aktif mengikuti

berbagai kegiatan yang berkaitan dengan penelitian seperti: pertemuan ilmiah, sharing

knowledge, diseminasi, pelatihan, seminar, proceeding, publikasi dan lain sebagainya.

- Agar penelitian dosen sesuai dengan Rencana Strategis penelitian institusi maka

diharapkan kerjasama pada Dosen dengan jalan senantiasa berkoordinasi dengan LP2M,

Prodi dan setiap elemen di UNIVERSITAS IPWIJA.

Demikian edaran ini disampaikan dan terima kasih.

 Jakarta, 4 September 2023

Dr. Ir. Titing Widyastuti, M.M.

Kepala LP2M Universitas IPWIJA

Tembusan : Rektor Universitas

Wakil Rektor 1

Wakil Rektor 2

Hybrid Round-Robin Load Balancing with Indexing for Fast
Collection of Personal Data at Big Data Webservices

1st Cakra Adipura Wicaksana
Department of Informatics

University of Sultan Ageng Tirtayasa

Cilegon, Indonesia
cakraadipura@untirta.ac.id

4th Hafiyyan Putra Pratama
Department of Telecommunication System

Indonesia University of Education

Purwakarta, Indonesia
hafiyyan@upi.edu

2nd Hanif Anggit Wicaksono
Department of Electrical Engineering
University of Sultan Ageng Tirtayasa

Cilegon, Indonesia
hanifanggit@gmail.com

5th Mohammad Fatkhurrokhman
Department of Electrical Engineering

Vocational Education
University of Sultan Ageng Tirtayasa

Serang, Indonesia
fatkhur0404@untirta.ac.id

3rd Supriyanto
Department of Electrical Engineering
University of Sultan Ageng Tirtayasa

Cilegon, Indonesia
supriyanto@untirta.ac.id

6th Ainatul Radhiah
Department of Software Engineering

University of IPWIJA

East Jakarta, Indonesia
ainatulradhiah@ipwija.ac.id

Abstract – Having the necessary skills to differentiate

between front-end and back-end services is crucial. In today's

world, there is a growing emphasis on developing web services,

a type of software that provides services that other software

programs can access via the Web. However, this increased

demand from users can lead to system inefficiencies, resulting in

sluggishness and bottlenecks. This study aims to assess and shed

light on the load-balancing capabilities of the round-robin

approach to address these issues. The load-balancing server

duty is divided up across numerous Web servers running the

Apache Web Server using this method, while the database

server in use is MySQL. In studies with 80 users and 30 trials

without round robin, the average reaction time from 10 trials

was 6394 ms; the average minimum response time was 940 ms;

the average maximum response time was 16349 ms; and the

error was 0.00%. As a closing remark, utilizing the Round

Robin method and indexing will reduce response time and

produce a constant number when compared to not utilizing

them.

Keyword - Web API, Round Robin, Load Balancing, and

webservices

I. INTRODUCTION

The level of server activity from internet users is very
high, of course, this will have an impact on information
providers. The performance of Web servers and databases as
media content providers is always expected to meet all the
needs of users. This impact is certainly not desired by several
agencies whose all activities are dependent on computer
networks [1]. Therefore, these agencies do not hesitate to
allocate funds to purchase special server devices with high
capabilities. If not taken seriously, this could result in the
servers being overloaded with requests from users. This is
because the demand from the user is greater than the server's
ability to provide services.

Everyday service requests from users are always
increasing [2]. This is of course related to the increasing
number of devices that can use internet facilities such as
computers, laptops, netbooks, smartphones, tablets, and other
devices. Websites with high data traffic can cause heavy
workloads on the server side, which in turn will result in
decreased server performance and even overall system
failure.

In the realm of contemporary digital interactions, web
APIs serve as a critical conduit for efficient data exchange
between users and web services. However, the issue of
sluggish response times for HTTP requests made through
web APIs presents a persistent and consequential challenge.
This phenomenon, characterized by extended intervals of
data retrieval or webpage loading, can arise from a multitude
of factors, including network congestion, server limitations,
resource-intensive client-side computations, or suboptimal
coding practices [3]. In the context of web APIs, the
implications of inadequate HTTP response speed extend
beyond mere inconvenience, encompassing reduced user
satisfaction and diminished interactivity and potentially
compromising the overall success of web-based platforms
heavily reliant on seamless API-driven interactions.
Addressing the intricacies of delayed HTTP responses in the
realm of web APIs is of paramount importance. By
uncovering and mitigating the root causes of this issue, not
only can the performance and effectiveness of web API-based
services be enhanced, but the overall digital experience of
users can also be elevated, fostering a more engaging and
productive online environment.

In this study mentioned here [4], certes (Client Response
Time Estimated by the Server), a server-based online
mechanism for web servers to assess client perceived
response time as if measured at the client, is presented.
However, certes does not illustrate integration with
databases. In research [5][6], it tried to build a huge database
that collected data from Twitter. Because of the limitations of
storing data, there is a bottleneck in acquiring the data.
Consequently, the system takes too much time to retrieve. A
very detailed explanation was also presented in [7], More
interestingly, the research used six servers as an example, and
surprisingly, the system was loaded with plenty of requests
concurrently. However, there is no explanation or
combination in conjunction with the database. Comparisons
between the round-robin method and the least method are
also demonstrated in [8]. The problem is still in the same
case; more specifically, it presented a well-crafted system
that only balanced the incoming requests to the server and
made no reference to the database. A study in [9], more
interestingly, also compares two methods between the

979-8-3503-0648-4/23/$31.00 ©2023 IEEE

2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC)2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC)

33

20
23

 1
st

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

dv
an

ce
d

En
gi

ne
er

in
g

an
d

Te
ch

no
lo

gi
es

 (I
CO

N
N

IC
) |

 9
79

-8
-3

50
3-

06
48

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

O
N

N
IC

59
85

4.
20

23
.1

04
67

64
7

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on March 30,2024 at 06:51:10 UTC from IEEE Xplore. Restrictions apply.

Round-Robin and the least-connection algorithm. The
experimental results reveal that the least-connection
algorithm is superior to round-robin. However, since there is
a drawback to round-robin, it needs to be improved properly.
The previously mentioned ponder was centered on adjusting
the approaching requests, not on the database. Eventually,
how to plan a brief procedure to bargain with database
frameworks but moreover to make outstandingly imperative
influence.

One solution to overcome this problem is to apply load-
balancing techniques [10][11][12][13]. A load balancing
approach is a strategy for evenly distributing the traffic load
across more connection lines so that traffic can flow more
efficiently, response times can be shortened, and overload on
one connection line can be avoided. When a server already
has several users and has reached its capacity limit, load
balancing is used [14]. One of the load-balancing tools is
Nginx [15]. One of the operating system's process scheduling
techniques is round robin. The purpose of a round robin
method, also known as a cyclic executive, is to split the time
allotted for each procedure into equal sections and to do so in
a cyclical fashion. Round robin scheduling is easy to
implement, and free of starvation [16]. Round robin is
designed for a time-sharing system [17]. Software systems
that can be quickly constructed by combining a variety of pre-
existing web APIs from diverse sources include microservice
services.

II. PROPOSED STRATEGY

One technology that has not been utilized is the use of a
database system that can ensure the integrity of the data sent
and can be used to authenticate/authorize two different
applications. Using authentication can help increase the
security of the data. Then optimizing virtual servers that
previously used a single server and then optimized using
multi servers. It is advantageous to employ numerous servers
to facilitate data movement between them and to maximize
the use of resource delivery programs to prevent server
overload. In this study, we try to utilize the combination of
the round-robin algorithm and the modification of the
database to balance the request systems.

A. Database System

The database design used in this study using a MySQL
database consists of a table with six fields, including ID,

name, phone number, city, address, and province. The
MySQL database belongs to the XAMPP application in this
regard. The utilization of MySQL is based on the research in
[18] that stated MySQL can still be used for a huge amount
of data and the research in [19] for a plan for keeping track of
a lot of data (perhaps tens of millions of rows).

• Table Structure
Row ids as primary keys have a big int type format with a

total length of 20. Then for name, phone number, city,
address, and province, they must have different lengths. For
example, in this experiment, the name must be 35 characters
long, the phone number must be 15 characters long, the
address must be long text, and the province must be 20
characters long. Finally, all of them must have a varchar-type
format. It really should be advised that the characters should
not use 255 at all because it will slow down the database. The

database designed has real data imported from Microsoft
Excel in.csv format totaling 59,283 rows, real person data
from all over Indonesia, which aims to be a benchmark for
calculating response time, min. response time, max. response
time, and errors.[20].

• Additional indexes in tables

An index is an object in MySQL that contains ordered
data from the values in one or more fields in a table. Just like
the table of contents in a book, the index is mainly used to
speed up the search for a data set with certain conditions
involving a combination of fields that have been defined in
an index. Without an index, searching for data will usually
take a long time, especially if the data is already on a very
large scale. The use of an index was inspired by the proposed
method in [21] that uses a three-dimensional or signature-
based structure as well as in [22].

B. Load balancing system

This research uses network system design by applying
load balancing algorithm as a mechanism in server selection.
Block diagram of the Load balancing system in Figure 1.

Client
Load

Balancing

Server 1
(:8081)

Server 2
(:8082)

Server 3
(:8083)

Web Server
(Database)

HTTP Request

HTTP Response

Figure 1 Flowchart Load balance System

Figure 1 is an experimental scenario using 3 virtual

servers connected to load balancing. Each virtual server is
started via Command Prompt. The load balancing process in
general, which is the sharing of the load on the server in
dividing traffic automatically. At the beginning of the
process, the client makes a request to the server. Requests
from clients will enter the Load balancing controller and
check the server. Then the controller will select the server
according to the load balancing algorithm. The client request
will be forwarded to the server queue. The server will respond
and send data to the client. The load balancing system will
continue to run until the request from the client has stopped.

• Algorithm Round Robin Configuration

Previously discussed system design. Where in the design
of the system there are steps in device configuration. Device
configuration is the first step in analyzing the load balancing
algorithm. Load balancing algorithm settings are performed
on the server controller Load balancing. Configuration is
done in the default file in the etc/nginx/sites-available
directory. The modification and combination are also
inspired by [23],[24], and [25].

• Apache JMeter Configuration

JMeter performance testing includes load tests and web
application stress tests. Adding Thread Group: This node is
used for group services to be tested; the number of threads is

34
Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on March 30,2024 at 06:51:10 UTC from IEEE Xplore. Restrictions apply.

200, the ramp-up period is 1, and the loop count is 1. For
example, having Student and Lecturer services. HTTP
Header Manager, this node is used to add name and value,
with the name column filled with Content-Type and Value
application-Json. Next add the HTTP Request node. At this
node, the researcher will determine the Web service that will
be tested. For example, the Web service has an Auth JWT
service, which is to configure authentication to the database
using JSON Extractor and Person to accept authentication
from Auth JWT using JSR223 Preprocessor. This service will
be added as part of the HTTP Request.

• Apache JMeter Design Testing

This time, Apache JMeter is being used for the test. Open-
source software made entirely of Java, the Apache JMeter
Application is used to load functional behavior tests and track
performance. Figure 2 below depicts the Apache JMeter
performance flow.

Figure 2 Flowchart Apache JMeter Design

Tests are also carried out to determine the average value

for each given parameter. Granting requests is used to load
the server at one time. The results of each experiment will be
compared and analyzed. So that it will get a performance
comparison between the Round Robin algorithm and not
using the Round Robin algorithm, and using Indexes or not
using Indexes which can be concluded at the end of the study.
Tests on the Response time parameters above were carried
out 6 times, having 5 categories, namely:

a. 40 requests per 30 seconds with several 40 connections.
b. 60 requests per 30 seconds with several 60 connections.
c. 80 requests per 30 seconds with several 80 connections.
d. 90 requests per 30 seconds with several 90 connections.
e. 100 requests per 30 seconds with several 100 connections.

III. RESULTS AND DISCUSSION

The test data will be collected from the summary report
results which are exported to Microsoft Excel on the JMeter
tool to get the performance results of the Round Robin
method. This test is conducted to determine the performance
of the Web server, the parameter used is response time.
Response time is the time determining the average result of
an HTTP request.

A. Testing of Indexes without Round Robin

• Example 40user/30s
The results of testing with indexes without the Round

Robin method with a sample of 40 users/30s and running 10

trials yield that the average response time in an experiment is
1177 milliseconds, the minimum response time is 640
milliseconds, and the maximum response time is 5304
milliseconds. Accordingly, the error rate is still 0%.

• Example 60user/30s

With a sample size of 60 users/30s, 10 trials, and testing
with indexes without the Round Robin approach, the findings
show that the average response time in an experiment is 1839
milliseconds, the shortest response time is 662 milliseconds,
and the longest response time is 4680 milliseconds. The
mistake rate is therefore still 0%.

• Example 80 users/30s

An experiment's average response time is 5929
milliseconds, the smallest response time is 745 milliseconds,
and the longest response time is 10932 milliseconds,
according to the results of testing using indexes without using
the Round Robin approach on a sample size of 80 users/30s
over the course of 10 trials. Therefore, the error rate remains
at 0%.

• Example 90 users/30s

After conducting 10 trials with a sample size of 90
users/30s, it was observed that when indexes were not used
in conjunction with the Round Robin approach, the average
response time for the experiment was found to be 11844
milliseconds. The shortest recorded response time was 187
milliseconds, while the longest response time reached up to
22020 milliseconds. As a result, the rate of error stands at
11.11%.

• Example 100 users/30s

The experiment's average response time was 15627
milliseconds, the shortest response time was 216
milliseconds, and the longest response time was 36133
milliseconds, according to the results of testing using indexes
without the Round Robin approach on a sample size of 100
users/30s over the course of 10 trials. As a result, the error
rate is 9.61 percent.

Of the five index tests without round robin with five
categories, namely 40 users, 60 users, 80 users, 90 users, and
100 users, the average of 40 users, as seen from the graph
above, is very stable when doing 10 consecutive trials; the
average of 60 users, as seen from the graph above, is quite
stable; the average of 80 users looks quite stable; and for 90
users and 100 users, the average response time graph is close
to and not much different; the graph shows very stable.

The value of all experiments with indexes without round

robin has a high value but has a stable graph on average
because it adds the indexing method. The minimum response
time and maximum response time are also quite low, stable,
and not far from the average of each parameter. Indexing
itself is a data structure object that does not depend on the
database table structure. Each index consists of a column
value and a pointer (or ROWID) to the row containing that
value. The pointer directly points to the correct row in the
table. In this study, the table "name" was chosen as the
ROWID, thus avoiding the occurrence of a full table scan.

35
Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on March 30,2024 at 06:51:10 UTC from IEEE Xplore. Restrictions apply.

B. Testing of Indexes with Round Robin

• Example 40 users/30s
Excitingly, when employing the Round Robin method

with a group of 40 users/30s, we obtained the subsequent
outcomes: the mean response time during an experiment
measures 681 milliseconds, while the shortest and longest
response times account for 640 and 799 milliseconds
respectively. Excitingly, there has been no increase in the
error rate whatsoever.

• Example 60 users/30s

The Round Robin method was used with a group of 40
users/30s, and excitingly, we were able to achieve the
following results: the mean response time during an
experiment is 1036 milliseconds, while the shortest and
longest response times are 774 and 1541 milliseconds,
respectively. Interestingly, there hasn't even been a slight rise
in the error rate.

• Example 80 users/30s

We were able to get the following results using the Round
Robin approach with a group of 40 users/30s: the mean
response time for an experiment is 5459 milliseconds, while
the shortest and longest response times are 811 and 12232
milliseconds, respectively. Strangely, the error rate hasn't
even slightly increased.

• Example 90 users/30s

The Circular Robin strategy was utilized with a bunch of
40 users/30s, and excitingly, we were able to realize the
taking after comes about: the cruel reaction time amid a try is
11951 milliseconds, whereas the most limited and longest
reaction times are 218 and 29797 milliseconds, individually.
In interests, there is a rate of error at 5.11%.

• Example 100 users/30s

When indexes were employed in conjunction with the
Round Robin technique, the experiment's average reaction
time was discovered to be 13922 milliseconds after 10 trials
with a sample size of 90 users/30s. The quickest response
time ever was 178 milliseconds, whereas the slowest was as
long as 25977 milliseconds. The rate of error is consequently
6.02%.

The scenario testing is done in a Round Robin format with

5 groups of users: 40, 60, 80, 90, and 100. The average of 40
users as determined by the studies is quite trustworthy when
performing 10 consecutive experiments. From 60 users is
rather stable, the average of 80 users shows a very stable, and
for 90 users and 100 users looks incredibly stable compared
to the previous test, the error value of 90 users and 100 users
is comparatively small. There is one thing that we must
notice: the error rate only appears when the user is equal to
or more than 90.

Indicates that the request and response have a high success

rate. Because the data distribution request employs load
balancing round robin, which lowers the value, and this test
also uses indexing, the value of all trials with indexes with
round robin is marginally lower than the index test without
round robin. The minimum and maximum response times are

likewise reasonably low, consistent, and close to the mean of
each parameter. The data structure object for indexing is
independent of the database table structure. A column value
and a pointer (or row ID) to the row holding that value are
both included in each index. The appropriate row in the table
is directly indicated by the pointer. To avoid a full table
search, the "name" of the table was used as the ROW ID in
this investigation.

IV. CONCLUSION

From the research that has been done, several
conclusions were obtained as follows :
1. Overall, the response speed of each request depends on

the specifications of the server, the network being passed.
These two factors are interdependent and cannot be
separated. If the client request has a fast network, but the
server being accessed has low specifications, the response
made by the server to the client is less responsive.

2. The proposed combination between the round-robin and
indexes that have successfully reduced the time response
is more stable than a single server and does not add
indexes that have higher values and irregular statistics.

3. The number of rows of data needs to be improved since it
will lead to more valid data since it could be compared
with the other load balance methods.

V. REFERENCES
[1] F. Ardianto, B. Alfaresi, and A. Darmadi, “LOAD BALANCING

DESIGN OF TWO MICROTICS-BASED INTERNET SERVICE
PROVIDER (ISP),” JURNAL SURYA ENERGY, vol. 3, no. 1, p.
198, Aug. 2018, doi: 10.32502/jse.v3i1.1232.

[2] R. Dani and F. Suryawan, “Design and Testing of Load Balancing
and Failover Using NginX,” Khazanah Informatika : Jurnal Ilmu
Komputer dan Informatika, vol. 3, no. 1, pp. 43–50, Jun. 2017, doi:
10.23917/khif.v3i1.2939.

[3] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler, “Waiting times
in quality of experience for web based services,” in 2012 Fourth

International Workshop on Quality of Multimedia Experience,
IEEE, Jul. 2012, pp. 86–96. doi: 10.1109/QoMEX.2012.6263888.

[4] D. P. Olshefski, J. Nieh, and D. Agrawal, “Inferring client response
time at the web server,” ACM SIGMETRICS Performance

Evaluation Review, vol. 30, no. 1, pp. 160–171, Jun. 2002, doi:
10.1145/511399.511355.

[5] C. A. Wicaksana, M. Fatkhurrokhman, H. P. Pratama, R. Tryawan,
Alimuddin, and R. Febriani, “Twitter Sentiment Analysis in
Indonesian Language using Naive Bayes Classification Method,”
in 2022 International Conference on Informatics Electrical and

Electronics (ICIEE), Yogyakarta: IEEE, Oct. 2022, pp. 1–6. doi:
10.1109/ICIEE55596.2022.10010002.

[6] C. A. Wicaksana and W. Martiningsih, “Deformation of 3D Object
of Human Body Internal Organs Using Finite Element Method
Approach Accelerated by GPU,” in Proceedings of the

International Joint Conference on Science and Engineering

(IJCSE 2020), Paris, France: Atlantis Press, 2020. doi:
10.2991/aer.k.201124.003.

[7] F. Apriliansyah, I. Fitri, and A. Iskandar, “Implementation of Load
Balancing on Web Servers Using Nginx,” Journal of Information
Technology and Management, vol. 6, no. 1, Apr. 2020, doi:
10.26905/jtmi.v6i1.3792.

[8] Dwi Budi Santoso, Jeffri Alfa Razaq, and Fatkhul Amin Amin,
“Monitoring Unisbank E-Learning Server Load Balancing Using
the Least Method,” Journal of Electronics and Computers, vol. 16,
no. 1, pp. 11–19, Jul. 2023, doi:
doi.org/10.51903/elkom.v16i1.932.

[9] T. Wira Harjanti, H. Setiyani, and J. Trianto, “Load Balancing
Analysis Using Round-Robin and Least-Connection Algorithms
for Server Service Response Time,” Applied Technology and

Computing Science Journal, vol. 5, no. 2, pp. 40–49, Dec. 2022,
doi: 10.33086/atcsj.v5i2.3743.

36
Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on March 30,2024 at 06:51:10 UTC from IEEE Xplore. Restrictions apply.

[10] X. Wang, Q. Sun, and J. Liang, “JSON-LD Based Web API
Semantic Annotation Considering Distributed Knowledge,” in
IEEE Access, 2020, pp. 197203–197221. doi:
10.1109/ACCESS.2020.3034937.

[11] Z. Cui et al., “Closer: Scalable load balancing mechanism for
cloud datacenters,” China Communications, vol. 18, no. 4, pp.
198–212, Apr. 2021, doi: 10.23919/JCC.2021.04.015.

[12] K. S. Chaudhury, S. Pattnaik, H. S. Moharana, and S. Pradhan,
“Static Load Balancing Algorithms in Cloud Computing:
Challenges and Solutions,” 2020, pp. 259–265. doi: 10.1007/978-
981-15-2475-2_24.

[13] A. Abdulrahim, S. E. Abdullahi, and J. B. Sahalu, “A New
Improved Round Robin (NIRR) CPU Scheduling Algorithm,” Int

J Comput Appl, vol. 90, no. 4, pp. 27–33, Mar. 2014, doi:
10.5120/15563-4277.

[14] Arif Maulana Komaruddin, Della Maerlin Sipitorini, and Pian
Rispian, “Load Balancing with the Round Robin Method for
Sharing Web Server Workloads,” Jurnal Siliwangi Sains

Teknologi, vol. 5, no. 2, pp. 47–50, 2019, doi:
10.37058/jssainstek.v5i2.1184.

[15] J. Wang and Z. Kai, “Performance Analysis and Optimization of
Nginx-based Web Server,” in Journal of Physics: Conference

Series, Jun. 2021, p. 012033. doi: 10.1088/1742-
6596/1955/1/012033.

[16] Y. Arta, “Application of the Round Robin Method in Multihoming
Networks in Computer Clusters,” IT JOURNAL RESEARCH AND
DEVELOPMENT, vol. 1, no. 2, pp. 26–35, Aug. 2017, doi:
10.25299/itjrd.2017.vol1(2).677.

[17] H. Nasser and T. Witono, “ANALYSIS OF ROUND ROBIN,
LEAST CONNECTION, AND RATIO ALGORITHMS IN
LOAD BALANCING USING OPNET MODELER,” Jurnal
Informatika, vol. 12, no. 1, Jun. 2016, doi:
10.21460/inf.2016.121.455.

[18] R. Čerešňák and M. Kvet, “Comparison of query performance in
relational a non-relation databases,” in Transportation Research

Procedia, High Tatras, May 2019, pp. 170–177. doi:
10.1016/j.trpro.2019.07.027.

[19] R. S. Kraleva, V. S. Kralev, N. Sinyagina, P. Koprinkova-Hristova,
and N. Bocheva, “Design and Analysis of a Relational Database
for Behavioral Experiments Data Processing,” International
Journal of Online Engineering (iJOE), vol. 14, no. 02, p. 117, Feb.
2018, doi: 10.3991/ijoe.v14i02.7988.

[20] Fathansyah, Database, Third Edition. Bandung: Informatika
Bandung, 2018. Accessed: Aug. 27, 2023. [Online]. Available:
www.biobses.com

[21] P.-L. Suei, Y.-F. Lu, R.-J. Liao, and S.-W. Lo, “A signature-based
Grid index design for main-memory RFID database applications,”
Journal of Systems and Software, vol. 85, no. 5, pp. 1205–1212,
May 2012, doi: 10.1016/j.jss.2012.01.026.

[22] M. Hayati and A. Setyanto, “Index Effect on Data Manipulation
Toward Database Performance,” J Phys Conf Ser, vol. 1140, p.
012036, Dec. 2018, doi: 10.1088/1742-6596/1140/1/012036.

[23] H. GIBET TANI and C. EL AMRANI, “Smarter Round Robin
Scheduling Algorithm for Cloud Computing and Big Data,”
Journal of Data Mining & Digital Humanities, Jan. 2018, doi:
10.46298/jdmdh.3104.

[24] A. K. Gupta, P. Mathur, C. M. Travieso-Gonzalez, M. Garg, and
D. Goyal, “ORR: Optimized Round Robin CPU Scheduling
Algorithm,” in Proceedings of the International Conference on

Data Science, Machine Learning and Artificial Intelligence, New
York, NY, USA: ACM, Aug. 2021, pp. 296–304. doi:
10.1145/3484824.3484917.

[25] A. Fiad, Z. M. Maaza, and H. Bendoukha, “Improved Version of
Round Robin Scheduling Algorithm Based on Analytic Model,”
International Journal of Networked and Distributed Computing,
vol. 8, no. 4, p. 195, 2020, doi: 10.2991/ijndc.k.200804.001.

37
Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on March 30,2024 at 06:51:10 UTC from IEEE Xplore. Restrictions apply.

	108-20230904-SE Penelitian Semester Ganjil 2023-2024.pdf (p.1)
	Hybrid_Round-Robin_Load_Balancing_with_Indexing_for_Fast_Collection_of_Personal_Data_at_Big_Data_Webservices.pdf (p.2-6)

